Panasonic ideas for life

FEATURES

- Best space savings in its class.
- Large capacity switching despite small size. Can replace micro ISO terminal type relays.
- Terminals for PC board pattern designs are easily allocated.
- Sealed type

TYPICAL APPLICATIONS
Head lamp, Fog lamp, Fan motor, EPS, Defogger, Seat heater, etc.

RoHS compliant

ORDERING INFORMATION

TYPES

Contact arrangement	Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Part No.
1 Form A	12 V DC	Max. $6.5 \mathrm{~V} \mathrm{DC} \mathrm{(Initial)}$	ACNH3212
		Max. 5.5 V DC (Initial)	ACNH3112

Standard packing; Carton (tube): 50 pcs.; Case: 1,000 pcs.

RATING

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current $[\pm 10 \%]$ (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	Nominal operating power (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Usable voltage range
12 V DC	$\underset{\text { (Initial) }}{\text { Max. } 6.5 \text { V DC }}$	$\begin{gathered} \hline \text { Min. } 1.0 \mathrm{~V} \text { DC } \\ \text { (Initial) } \\ \hline \end{gathered}$	37.5 mA	320Ω	450 mW	10 to 16 V DC
	$\underset{\text { (Initial) }}{\substack{\text { Max. } 5.5 \mathrm{~V} \\ \hline}}$	$\underset{\text { (Initial) }}{\mathrm{Min} .0 .8 \mathrm{~V} \text { DC }}$	53.3 mA	225Ω	640 mW	

2. Specifications

Characteristics		Item	Specifications
Contact	Arrangement		1 Form A
	Contact resistance (Initial)		Typ5m (By voltage drop 6 V DC 1 A)
	Contact material		Ag alloy (Cadmium free)
Rating	Nominal switching capacity (resistive load)		30A 14V DC
	Max. carrying current		<450mW> $35 \mathrm{~A} / 1 \mathrm{~h}, 45 \mathrm{~A} / 2 \mathrm{~min}$. at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ $30 \mathrm{~A} / 1 \mathrm{~h}, 40 \mathrm{~A} / 2 \mathrm{~min}$. at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$ $25 \mathrm{~A} / 1 \mathrm{~h}, 35 \mathrm{~A} / 2 \mathrm{~min}$. at $110^{\circ} \mathrm{C} 230^{\circ} \mathrm{F}$ <640mW> $30 \mathrm{~A} / 1 \mathrm{~h}, 40 \mathrm{~A} / 2 \mathrm{~min}$. at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ $25 \mathrm{~A} / 1 \mathrm{~h}, 35 \mathrm{~A} / 2 \mathrm{~min}$. at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$ $20 \mathrm{~A} / 1 \mathrm{~h}, 30 \mathrm{~A} / 2 \mathrm{~min}$. at $110^{\circ} \mathrm{C} 230^{\circ} \mathrm{F}$
	Continuous carrying current		20 A 14 V DC (450 mW) at $110^{\circ} \mathrm{C} 230^{\circ} \mathrm{F}, 15 \mathrm{~A} 14 \mathrm{~V}$ DC (640 mW) at $110^{\circ} \mathrm{C} 230^{\circ} \mathrm{F}$
	Nominal operating power		450 mW (for pick-up voltage max. 6.5 V DC), 640 mW (for pick-up voltage max. 5.5 V DC)
	Min. switching capacity (resistive load)*1		1A 14V DC
Electrical characteristics	Insulation resistance (Initial)		Min. $100 \mathrm{M} \Omega$ (at 500 V DC, Measurement at same location as "Breakdown voltage" section.)
	Breakdown voltage (Initial)	Between open contacts	500 Vrms for 1 min . (Detection current: 10 mA)
		Between contacts and coil	500 Vrms for 1 min . (Detection current: 10 mA)
	Operate time (at nominal voltage)		Max. 10ms (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$, excluding contact bounce time) (Initial)
	Release time (at nominal voltage)		Max. 10 ms (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$) (Initial) (without protective element)
Mechanical characteristics	Shock resistance	Functional	Min. $100 \mathrm{~m} / \mathrm{s}^{2}\{10 \mathrm{G}\}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$)
		Destructive	Min. 1,000 m/s ${ }^{2}$ \{100G\} (Half-wave pulse of sine wave: 6 ms)
	Vibration resistance	Functional	10 Hz to 100 Hz , Min. $44.1 \mathrm{~m} / \mathrm{s}^{2}\{4.5 \mathrm{G}\}$ (Detection time: $10 \mu \mathrm{~s}$)
		Destructive	10 Hz to 500 Hz , Min. $44.1 \mathrm{~m} / \mathrm{s}^{2}\{4.5 \mathrm{G}\}$ Time of vibration for each direction; X, Y direction: 2 hours, Z direction: 4 hours
	Mechanical		Min. 10^{7} (at 120 cpm)
Expected life	Electrical		<Resistive load> Min. 10^{5} (at nominal switching capacity, operating frequency: 1s ON, 1s OFF) <Motor load> Min. 3×10^{5} (at inrush 84 A , steady $18 \mathrm{~A}, 14 \mathrm{~V}$ DC operating frequency: ON 2 s , OFF 5 s) <Lamp load> Min. 2×10^{5} (at inrush 84 A , steady $12 \mathrm{~A}, 14 \mathrm{~V}$ DC operating frequency: ON 1s, OFF 14s)
Conditions	Conditions for operation, transport and storage		Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+110^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+230^{\circ} \mathrm{F}$ Humidity: 2% R.H. to 85% R.H. (Not freezing and condensing at low temperature)
Mass			Approx. 9 g .32 oz

Note: *1. This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.

REFERENCE DATA

1-(1). Coil temperature rise Sample: ACNH3212, 3pcs Measured portion: Inside the coil Contact carrying current: 10A, 20A, 30A Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

1-(2). Coil temperature rise
Sample: ACNH3212, 3pcs
Measured portion: Inside the coil
Contact carrying current: 10A, 20A
Ambient temperature: $110^{\circ} \mathrm{C} 230^{\circ} \mathrm{F}$

2. Ambient temperature and operating voltage range

3-(1). Distribution of pick-up and drop-out voltage
Sample: ACNH3212, 20pcs.

4-(1). Distribution of operate and release time Sample: ACNH3212, 20pcs.

3-(2). Distribution of pick-up and drop-out voltage
Sample: ACNH3112, 20pcs.

4-(2). Distribution of operate and release time Sample: ACNH3112, 20pcs.

5. Electrical life test (Resistive load)

Sample: ACNH3212, 6pcs.
Load: Resistive load (NO side: 30A 14V DC)
Operating frequency: ON 1s, OFF 1s
Ambient temperature: Room temperature
Circuit:

Change of pick-up and drop-out voltage

Change of contact resistance

6-(1). Electrical life test (Motor load)
Sample: ACNH3212, 3pcs.
Load: inrush: 84A/steady: 18A,
radiator fan actual load (motor free)
Operating frequency: ON 2s, OFF 5 s
Ambient temperature: $110^{\circ} \mathrm{C} 230^{\circ} \mathrm{F}$
Circuit:

Change of pick-up and drop-out voltage

Change of contact resistance

Sample: ACNH3212, 6pcs.
Load: $60 \mathrm{~W} \times 2$, inrush: $84 \mathrm{~A} /$ steady: 12 A
Operating frequency: ON 1s, OFF 14s Ambient temperature: Room temperature

Circuit:

Change of pick-up and drop-out voltage

Change of contact resistance

DIMENSIONS (mminch)

Dimension:
General tolerance
Max. 1 mm .039 inch: $\quad \pm 0.1 \pm .004$
1 to 3 mm .039 to .118 inch: $\pm 0.2 \pm .008$
Min. 3 mm .118 inch: $\quad \pm 0.3 \pm .012$

* Dimensions (thickness and width) of terminal is measured before pre-soldering.

Intervals between terminals is measured at A surface level.

NOTES

Usage, transport and storage conditions

1) Ambient temperature, humidity, and atmospheric pressure during usage, transport, and storage of the relay:
(1) Temperature:
-40 to $+110^{\circ} \mathrm{C}-40$ to $+230^{\circ} \mathrm{F}$
(2) Humidity: 2 to 85% RH
(Avoid freezing and condensation.)
(3) Atmospheric pressure: 86 to 106 kPa The humidity range varies with the temperature. Use within the range indicated in the graph below. (Temperature and humidity range for usage, transport, and storage)

